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Model Criticism

Data = robbery events in
Chicago in 2016.
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Model Criticism

Is this a good model?
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Model Criticism

"All models are wrong."

G. Box (1976)
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Model comparison
Have: two candidate models P and Q , and samples fxigni=1 from
reference distribution R
Goal: which of P and Q is better?

P : two components Q : ten components
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A relative test of goodness-of-fit
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Most interesting models have latent structure
Graphical model representation of hierarchical LDA with a nested
CRP prior, Blei et al. (2003)
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Figure 1: (a) The paths of four tourists through the infinite tree of Chinese restaurants (L =
3). The solid lines connect each restaurant to the restaurants referred to by its tables. The
collected paths of the four tourists describe a particular subtree of the underlying infinite
tree. This illustrates a sample from the state space of the posterior nested CRP of Figure 1b
for four documents. (b) The graphical model representation of hierarchical LDA with a
nested CRP prior. We have separated the nested Chinese restaurant process from the topics.
Each of the infinite β’s corresponds to one of the restaurants.

to one of the L available topics. All other variables in the model—θ and β—are integrated
out. The Gibbs sampler thus assesses the values of zm,n and cm,ℓ.
Conceptually, we divide the Gibbs sampler into two parts. First, given the current state
of the CRP, we sample the zm,n variables of the underlying LDA model following the
algorithm developed in [12], which we do not reproduce here. Second, given the values of
the LDA hidden variables, we sample the cm,ℓ variables which are associated with the CRP
prior. The conditional distribution for cm, the L topics associated with documentm, is:

p(cm |w, c−m, z) ∝ p(wm | c,w−m, z)p(cm | c−m),

where w−m and c−m denote the w and c variables for all documents other than m. This
expression is an instance of Bayes’ rule with p(wm | c,w−m, z) as the likelihood of the data
given a particular choice of cm and p(cm | c−m) as the prior on cm implied by the nested
CRP. The likelihood is obtained by integrating over the parameters β, which gives:

p(wm | c,w−m, z) =
L∏

ℓ=1

(
Γ(n

(·)
cm,ℓ,−m + Wη)

∏
w Γ(n

(w)
cm,ℓ,−m + η)

∏
w Γ(n

(w)
cm,ℓ,−m + n

(w)
cm,ℓ,m + η)

Γ(n
(·)
cm,ℓ,−m + n

(·)
cm,ℓ,m + Wη)

)
,

where n
(w)
cm,ℓ,−m is the number of instances of word w that have been assigned to the topic

indexed by cm,ℓ, not including those in the current document, W is the total vocabulary
size, and Γ(·) denotes the standard gamma function. When c contains a previously unvisited
restaurant, n(w)

cm,ℓ,−m is zero.

Note that the cm must be drawn as a block. The set of possible values for cm corresponds
to the union of the set of existing paths through the tree, equal to the number of leaves,
with the set of possible novel paths, equal to the number of internal nodes. This set can be
enumerated and scored using Eq. (1) and the definition of a nested CRP in Section 2.2.
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Outline

Relative goodness-of-fit tests for Models with
Latent Variables

The kernel Stein discrepancy
� Comparing two models via samples: MMD and the witness function.
� Comparing a sample and a model: Stein modification of the witness

class

Constructing a relative hypothesis test using the KSD

Relative hypothesis tests with latent variables

7/48



Kernel Stein Discrepancy

Model P , data fxigni=1 � Q .

“All models are wrong” (P 6= Q).
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Integral probability metrics
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EQ f (Y )� EP f (X )
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All of kernel methods

Functions are linear combinations of features:

kf k2
F :=

P1
i=1 fi 2
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All of kernel methods

“The kernel trick”

f (x ) =
1X
`=1

f`'`(x )

=
mX

i=1

�i k(xi ; x )| {z }
h'(xi );'(x )iF
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All of kernel methods

“The kernel trick”

f (x ) =
1X
`=1

f`'`(x )
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mX
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�i k(xi ; x )| {z }
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f` :=
Pm

i=1 �i'`(xi )

Function of infinitely many features expressed using m coefficients.
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MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

-4 -2 2 4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

p(x)

q(x)

f *(x)

13/48



MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

For characteristic RKHS F , MMD(P ;Q ;F) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded variation 1 (Kolmogorov metric) [Müller, 1997]

1-Lipschitz (Wasserstein distances) [Dudley, 2002]
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Statistical model criticism: toy example
Can we compute MMD with samples from Q and a model P?
Problem: usualy can’t compute Epf in closed form.

MMD(P ;Q) = supkf kF�1[Eq f � Epf ]
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Stein idea
To get rid of Epf in

sup
kf kF�1

[Eq f � Epf ]

we use the (1-D) Langevin Stein operator

[Apf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

Then
EpApf = 0

subject to appropriate boundary conditions.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Kernel Stein Discrepancy
Stein operator

Apf =
1

p(x )
d
dx

(f (x )p(x ))

Kernel Stein Discrepancy (KSD)

KSDp(Q) = sup
kgkF�1

EqApg � EpApg
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Simple expression using kernels
Re-write stein operator as:

[Apf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

= f (x )
d
dx

log p(x ) +
d
dx

f (x )

Can we define “Stein features”?

[Apf ] (x ) =
�

d
dx

log p(x )
�

f (x ) +
d
dx

f (x )

=:


f ; �(x )|{z}

stein features

�
F

where Ex�p�(x ) = 0.
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The kernel trick for derivatives
Reproducing property for the derivative: for differentiable k(x ; x 0),

d
dx

f (x ) =
�
f ;

d
dx

'(x )
�
F

d
dx

k(x ; x 0) =
�

d
dx

'(x ); '(x 0)
�
F

Using kernel derivative trick in (a),

[Apf ] (x ) =
�

d
dx

log p(x )
�

f (x ) +
d
dx

f (x )

=

*
f ;
�

d
dx

log p(x )
�
'(x ) +

d
dx

'(x )| {z }
(a)

+
F

=: hf ; �(x )iF :
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Kernel stein discrepancy: derivation
Closed-form expression for KSD: given independent x ; x 0 � Q , then

KSDp(Q) = sup
kgkF�1

Ex�q ([Apg ] (x ))

= sup
kgkF�1

Ex�q hg ; �x iF

=
(a)

sup
kgkF�1

hg ;Ex�q�x iF = kEx�q�xkF

Caution: (a) requires a condition for the Riesz theorem to hold,

Ex�q

�
d
dx

log p(x )
�2

<1:

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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The witness function: Chicago Crime

Model p = 10-component
Gaussian mixture.
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The witness function: Chicago Crime

Witness function g shows
mismatch
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Does the Riesz condition matter?

Consider the standard normal,

p(x ) =
1p
2�

exp
�
�x 2=2

�
:

Then
d
dx

log p(x ) = �x :

If q is a Cauchy distribution, then the integral

Ex�q

�
d
dx

log p(x )
�2

=

Z 1

�1
x 2q(x )dx

is undefined.

22/48



Does the Riesz condition matter?

Consider the standard normal,

p(x ) =
1p
2�

exp
�
�x 2=2

�
:

Then
d
dx

log p(x ) = �x :

If q is a Cauchy distribution, then the integral

Ex�q

�
d
dx

log p(x )
�2

=

Z 1

�1
x 2q(x )dx

is undefined.

22/48



Kernel stein discrepancy: population expression
Test statistic:

KSD2
p(Q) = kEx�q�xk2

F = Ex ;x 0�Qhp(x ; x 0)

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0) + sp(x )>k2(x ; x 0)

+ sp(x 0)>k1(x ; x 0) + tr
�
k12(x ; x 0)

�

sp(x ) 2 RD = rp(x )
p(x )

k1(a ; b) := rxk(x ; x 0)jx=a ;x 0=b 2 RD ,
k2(a ; b) := rx 0k(x ; x 0)jx=a ;x 0=b 2 RD ,
k12(a ; b) := rxrx 0k(x ; x 0)jx=a ;x 0=b 2 RD�D
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Do not need to normalize p, or sample from it.
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Test statistic:

KSD2
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If kernel is C0-universal and Q satisfies Ex�Q




r �log p(x )
q(x )

�


2
<1,

then KSD2
p(Q) = 0 iff P = Q .
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KSD for discrete-valued variables
Discrete domains: X = f1; : : : ;LgD with L 2 N.
The population KSD (discrete):

KSD2
p(Q) = Ex ;x 0�Qhp(x ; x 0)

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0)� sp(x )>k2(x ; x 0)

� sp(x 0)>k1(x ; x 0) + tr
�
k12(x ; x 0)

�
k1(x ; x 0) = ��1

x k(x ; x 0), ��1
x is difference on x , sp(x ) =

�p(x )
p(x )

A discrete kernel: k(x ; x 0) = exp (�dH (x ; x 0)), where
dH (x ; x 0) = D�1PD

d=1 I(xd 6= x 0d).

KSD2
p(Q) = 0 iff P = Q if

Gram matrix over all the configurations in X is strictly positive definite,
P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Empirical statistic, asymptotic normality for P 6= Q
The empirical statistic:

\KSD2
p(Q) :=

1
n(n � 1)

X
i 6=j

hp(xi ; xj ):

Asymptotic distribution when P 6= Q :
p

n
�
\KSD2

p(Q)�KSDp(Q)

�
d! N (0; �2

hp
) �2

hp
= 4Var[Ex 0 [hp(x ; x 0)]]:

K̂SD2
p(Q)

0.0

0.5

Prob

KSD2
p(Q)
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Relative goodness-of-fit testingRelative goodness-of-fit test

3

P Q

KSDq(R)KSDp(R)

R

Two latent variable models P and Q , data fxigni=1
i:i:d:� R.

Distinct models p 6= q

Hypotheses:

H0 : KSDp(R) � KSDq(R) vs. H1 : KSDp(R) > KSDq(R)

(H0 : ‘P is as good as Q ; or better’ vs. H1 : ‘Q is better’ )
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Relative GOF testing: joint asymptotic normality
Joint asymptotic normality when P 6= R and Q 6= R

p
n

2
4 \KSD2

p(R)�KSDp(R)
\KSD2

q(R)�KSDq(R)

3
5 d! N

 "
0
0

#
;

"
�2

hp
�hphq

�hphq �2
hq

#!

K̂SD2
p(R)

K̂SD2
q(R)

KSD2
p(R)

KSD2
q(R)

27/48



Relative GOF testing: joint asymptotic normality
Joint asymptotic normality when P 6= R and Q 6= R

p
n

2
4 \KSD2

p(R)�KSDp(R)
\KSD2

q(R)�KSDq(R)

3
5 d! N

 "
0
0

#
;

"
�2

hp
�hphq

�hphq �2
hq

#!

Difference in statistics is asymptotically normal:

p
n
�
\KSD2

p(R)�\KSD2
q(R)� (KSDp(R)�KSDq(R))

�
d! N

�
0; �2

hp
+ �2

hq
� 2�hphq

�
=) a statistical test with null hypothesis KSDp(R)�KSDq(R) � 0
is straightforward.
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Latent variable models
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Figure 1: (a) The paths of four tourists through the infinite tree of Chinese restaurants (L =
3). The solid lines connect each restaurant to the restaurants referred to by its tables. The
collected paths of the four tourists describe a particular subtree of the underlying infinite
tree. This illustrates a sample from the state space of the posterior nested CRP of Figure 1b
for four documents. (b) The graphical model representation of hierarchical LDA with a
nested CRP prior. We have separated the nested Chinese restaurant process from the topics.
Each of the infinite β’s corresponds to one of the restaurants.

to one of the L available topics. All other variables in the model—θ and β—are integrated
out. The Gibbs sampler thus assesses the values of zm,n and cm,ℓ.
Conceptually, we divide the Gibbs sampler into two parts. First, given the current state
of the CRP, we sample the zm,n variables of the underlying LDA model following the
algorithm developed in [12], which we do not reproduce here. Second, given the values of
the LDA hidden variables, we sample the cm,ℓ variables which are associated with the CRP
prior. The conditional distribution for cm, the L topics associated with documentm, is:

p(cm |w, c−m, z) ∝ p(wm | c,w−m, z)p(cm | c−m),

where w−m and c−m denote the w and c variables for all documents other than m. This
expression is an instance of Bayes’ rule with p(wm | c,w−m, z) as the likelihood of the data
given a particular choice of cm and p(cm | c−m) as the prior on cm implied by the nested
CRP. The likelihood is obtained by integrating over the parameters β, which gives:

p(wm | c,w−m, z) =
L∏

ℓ=1

(
Γ(n

(·)
cm,ℓ,−m + Wη)

∏
w Γ(n

(w)
cm,ℓ,−m + η)

∏
w Γ(n

(w)
cm,ℓ,−m + n

(w)
cm,ℓ,m + η)

Γ(n
(·)
cm,ℓ,−m + n

(·)
cm,ℓ,m + Wη)

)
,

where n
(w)
cm,ℓ,−m is the number of instances of word w that have been assigned to the topic

indexed by cm,ℓ, not including those in the current document, W is the total vocabulary
size, and Γ(·) denotes the standard gamma function. When c contains a previously unvisited
restaurant, n(w)

cm,ℓ,−m is zero.

Note that the cm must be drawn as a block. The set of possible values for cm corresponds
to the union of the set of existing paths through the tree, equal to the number of leaves,
with the set of possible novel paths, equal to the number of internal nodes. This set can be
enumerated and scored using Eq. (1) and the definition of a nested CRP in Section 2.2.
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Latent variable models

Can we compare latent variable
models with KSD?

p(x ) =
Z

p(x jz )p(z )dz

q(y) =
Z

q(y jw)p(w)dw X Y

WZ

Recall multi-dimensional Stein operator:

[Tpf ] (x ) = f (x )
rp(x )
p(x )| {z }
(a)

+ hr; f (x )i :

Expression (a) requires marginal p(x ), often intractable: : :
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What not to do

Approximate the integral using fzj gmj=1 � p(z ):

p(x ) =
Z

p(x jz )p(z )dz

� pm(x ) =
1
m

mX
j=1

p(x jzj )

Estimate KSD with approxiomate density:

\KSD2
p(R) � \KSD2

pm
(R)

Problem: rpm (x )
pm (x ) very numerically unstable. Thus \KSD2

pm
(R) has high

variance.
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MCMC approximation of score function
Result we use:

sp(x ) = Ez jx [sp(x jz )]
Proof:

sp(x ) =
rp(x )
p(x )

=
1

p(x )

Z
rp(x jz )dp(z )

=

Z rp(x jz )
p(x jz ) � p(x jz )dp(z )

p(x )
= Ez jx [sp(x jz )];

Approximate intractable posterior Ez jxi [sp(xi jz )]

�sp(xi ; z
(t)
i ) :=

1
m

mX
j=1

sp(xi jz (t)i ;j ) � sp(xi )

with z (t)i = (z (t)i ;1 ; : : : ; z
(t)
i ;m) via MCMC (after t burn-in steps)

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis, 11, 215–245.
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KSD for latent variable models

Recall earlier KSD estimate:

Un(P) =
1

n(n � 1)

X
i 6=j

hp(xi ; xj ) (� KSD2
p(R))

KSD estimate for latent variable models:

U (t)
n (P) :=

1
n(n � 1)

X
i 6=j

�Hp
�
(xi ; z

(t)
i ); (xj ; z

(t)
j )

�
(� KSD2

p(R))

where �Hp is the Stein kernel hp with sp(xi ) replaced with �sp(xi ; z
(t)
i ):
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Return to relative GOF test, latent variable models
Hypotheses:

H0 : KSDp(R) � KSDq(R) vs. H1 : KSDp(R) > KSDq(R)

(H0 : ‘P is as good as Q ; or better’ vs. H1 : ‘Q is better’ )

Strategy:

Estimate the difference KSD2
p(R)�KSD2

q(R) by

D (t)
n (P ;Q) = U (t)

n (P)�U (t)
n (Q):

If D (t)
n (P ;Q) is sufficiently large, reject H0:

� “Sufficient”: control type-I error (falsely rejecting H0)

� Requires the (asymptotic) behaviour of D(t)
n (P ;Q)

34/48



Return to relative GOF test, latent variable models
Hypotheses:

H0 : KSDp(R) � KSDq(R) vs. H1 : KSDp(R) > KSDq(R)

(H0 : ‘P is as good as Q ; or better’ vs. H1 : ‘Q is better’ )

Strategy:

Estimate the difference KSD2
p(R)�KSD2

q(R) by

D (t)
n (P ;Q) = U (t)

n (P)�U (t)
n (Q):

If D (t)
n (P ;Q) is sufficiently large, reject H0:

� “Sufficient”: control type-I error (falsely rejecting H0)

� Requires the (asymptotic) behaviour of D(t)
n (P ;Q)

34/48



Asymptotic distribution for relative KSD test
Asymptotic distribution of approximate KSD estimate n ; t !1:

p
n
h
D (t)

n (P ;Q)� �PQ

i
d! N (0; �2

PQ)

where

�PQ = KSD2
p(R)�KSD2

q(R);

�2
PQ = lim

n ;t!1
n � Var

h
D (t)

n (P ;Q)
i
:

Fine print:

The double limit requires fast bias decayp
n
�
EfD (t)

n (P ;Q)g � �PQ
�! 0 (t !1):

The fourth moment of �H (t)
p � �H (t)

q has finite limit sup. (t !1):
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Asymptotic distribution for relative KSD test
Asymptotic distribution of approximate KSD estimate n ; t !1:

p
n
h
D (t)

n (P ;Q)� �PQ

i
d! N (0; �2

PQ)

where

�PQ = KSD2
p(R)�KSD2

q(R);

�2
PQ = lim

n ;t!1
n � Var

h
D (t)

n (P ;Q)
i
:

Level-� test:

Reject H0 if D (t)
n (P ;Q) � �̂PQp

n
c1��

c1�� is (1� �)-quantile of N (0; 1):
�̂PQ estimated via jackknife
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Experiments
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Experiment 1: sensitivity to model difference
Data R : Probabilistic Principal Component Analysis PPCA(A):

xi 2 R100 � N (Azi ; I ); zi 2 R10 � N (0; Iz )

Generate P ;Q : perturb (1; 1)-entry : A� = A + �E1;1
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Experiment 2: topic models for arXiv articles

Data R : arXiv articles from category stat.TH (stat theory) :
Models P ;Q : LDAs trained on articles from different categories

� P : math.PR (math probability theory)
� Q : stat.ME (stat methodology)

Graphical model of LDA

Blei, Ng, Jordan (JMLR 2003)
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Experiment 2: topic models for arXiv articles
Data R : arXiv articles from category stat.TH (stat theory) :
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A failure mode
Data R : arXiv articles from category stat.TH (stat theory) :
Models P ;Q : LDAs trained on articles from different categories (100
topics)

� P : cs.LG (CS machine learning)
� Q : stat.ME (stat methodology)
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What went wrong?
Recall (one-dimension, informally)

sp(x ) =
p(x + 1)

p(x )
� 1

Numerical instability arises when

Observed word x has low probability
Word next to x in vocabulary has non-negiligible probability

LDA’s score = concatenation of 1d-score functions (by conditional
independence)

sp(x ) = (sp;1(x ); : : : ; sp;d(x ); : : : ; sp;D(x ))

where sp;d(x ) = Ez d jx [sp(x
d jz d)] = Ez d jx

"
p(x d + 1jz d ; �)

p(x d jz d ; �)

#
� 1

) Higher chance of instability
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Observations on the sampler
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Requirements on n and t

The KSD difference estimate D (t)
n (P ;Q) is biased for finite t :

E[D (t)
n (P ;Q)] 6= �P ;Q := KSD2

p(R)�KSD2
q(R)

If the bias decay is slower than
p

n , i.e.,

p
n
�
E[D (t)

n (P ;Q)]� �P ;Q

�
| {z }

bias(t)#0

9 0;

then, the asymptotic normality around �P ;Q does not hold:

p
n
h
D (t)

n (P ;Q)� �PQ

i
d
9 N (0; �2

PQ):
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Poor MCMC hurts the test
How important is the quality of 1

m
Pm

j=1 sp(x jz (t)j )?

Experiment with PPCA:

P : MALA with a bad step size (poor sampler)
Q : NUTS-HMC (good sampler)

Expectation:

If poor, the test would reject even if P and Q are equally good

Besag (1994), Roberts and Tweedie (Bernoulli 1996); Hoffman and Gelman (JMLR 2014)
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Sufficient burn-in
! correct type-I error
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�
	Larger n =) more

sensitive to mismatch
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